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Central-Pacific El Niño-Southern Oscillation
less predictable under greenhouse warming

Hui Chen1,2,7, Yishuai Jin 1,2,7 , Zhengyu Liu 3,4 , Daoxun Sun 2 ,
Xianyao Chen 1, Michael J. McPhaden 5, Antonietta Capotondi 6 &
Xiaopei Lin 1

El Niño-Southern Oscillation (ENSO) is the dominant mode of interannual cli-
mate variability in the tropical Pacific, whose nature nevertheless may change
significantly in a warming climate. Here, we show that the predictability of
ENSO may decrease in the future. Across the models in the Coupled Model
Intercomparison Project Phase 6 (CMIP6), we find a robust decrease of the
persistence and predictability for the Central Pacific (CP) ENSO under global
warming, notably in passing through the boreal spring. The strength of spring
predictability barrier will be increased by 25% in the future. The reduced
predictability ofCPENSO is causedby the fasterwarmingover surface ocean in
tropical Pacific and, in turn, the enhanced thermodynamical damping rate on
CP ENSO in response to global warming. In contrast, the predictability of
Eastern Pacific ENSO will not change. Our results suggest that future green-
house warming will make the prediction of CP ENSO more challenging, with
far-reaching implications on future climate predictions.

El Niño-Southern Oscillation (ENSO) is the dominant mode of inter-
annual climate variability in the tropical Pacific1–3. ENSO influence has
been detected worldwide, on extreme weather events, ecosystems,
and agriculture around the world2,4–7. ENSO events are typically clas-
sified into the Eastern-Pacific (EP) type (maximum warming/cooling
appears in the equatorial eastern Pacific) and Central Pacific (CP) type
(maximum warming/cooling appears in the equatorial central Pacific)
because of their distinct spatial and temporal characteristics, and cli-
mate impacts8–10.

Extensive studies have investigated the impacts of future cli-
mate change on ENSO characteristics in different warming
scenarios11–14. A robust intensifying trend of the magnitude of sea
surface temperature anomaly (SSTA) associated with ENSO varia-
bility has been projected in the next century under various emission
scenarios13. ENSO’s response to global warming has far-reaching
implications for the global climate system15,16, including slowing the
rate of future mid-latitude Southern Ocean warming17 and

accelerating Antarctic shelf ocean warming18. On the other hand,
extratropical climate change may also be an important factor for
modulating the tropical climate (e.g., Walker circulation)19.

In spite of these studies, much less attention has been paid to the
change of ENSO predictability in a warming climate, leaving a funda-
mental question wide open: How will greenhouse warming affects
ENSOpredictability in the future? A few studies have shown a decrease
in ENSO predictability in recent decades20,21. However, due to the
relatively short observations and the possible modulation by internal
multi-decadal climate variability22,23, it remains unclear whether this
transient reduction of predictability is induced by the warming cli-
mate. In an equilibrated future warming climate, the 6-month persis-
tence of ENSO is slightly reduced24. However, ENSO predictability
depends not only on the SSTA persistence, but also on other factors,
notably the cross-correlation between SSTA and subsurface ocean
heat content in the equatorial Pacific25,26. Therefore, both SSTA per-
sistence and subsurface ocean heat content should be studied to fully
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evaluate ENSO predictability. Moreover, ENSO predictability may also
be affected by extratropical processes12,27,28. Notably, the North Pacific
Meridional Mode (NPMM) is expected to strengthen in a warming
climate and thus become a more influential precursor of ENSO,
enhancing its predictability12,28. The inter-basin interactions from the
Atlantic and Indian Oceans, as well as sub-seasonal variability, such as
the Madden-Julian Oscillation, can also affect the ENSO dynamics29,30

and its predictability31–34. As such, the change of ENSO predictability
under globalwarming remains unknown. Finally, ENSOpredictability is
closely associated with the spring predictability barrier (SPB), which
refers to the sharp drop of ENSO prediction skill across the boreal
spring season35. The SPB still remains an outstanding issue in current
ENSOprediction36 and its response of the ENSO SPB to global warming
has not been studied.

Here, using outputs from the latest climate models participating
in the Coupled Model Intercomparison Project Phase 6 (CMIP6), we
find a robustdecrease of predictability of CP ENSO, associatedwith the
increase of the SPB strength, suggesting less predictable CP ENSO in a
future warming climate. In contrast, there is no significant change for
EP ENSO predictability.

Results
Enhanced persistence barrier of CP ENSO under greenhouse
warming
We first examine the persistence of ENSO, because model persistence
can be compared directly with present observations, and because per-
sistence is one major contributor to predictability, with a higher per-
sistence implying more information from the previous month for the
prediction of the next month35. Since CMIP6 can reproduce the obser-
vational featuresof theCPandEPENSOaswell as the seasonal evolution
of their persistence (Supplementary Note 1, Supplementary
Figs. 1 and 2), we first analyze the persistence in CMIP6. Here we use C
and E indices to represent the CP and EP types of ENSO, which are
defined as PC1 +PC2ð Þ=

ffiffiffi
2

p
and PC1� PC2ð Þ=

ffiffiffi
2

p
respectively, because

they are often used to study ENSO diversity under global warming11,37.
We begin by evaluating the change of the year-round SSTA persistence
of ENSObetween thepresent-day (1900–1999) and future (2000–2099)
periods. In total, 33 of the 36 models (92%) show a decreased year-
round persistence for the CP ENSO in the future period relative to the
present-day (red vs. blue bars in Supplementary Fig. 3a). The multi-
modelmeanof theCPENSOpersistence is decreased significantly at the
95% confidence level according to a bootstrap test (see Methods). This
decrease of year-round persistence is caused predominantly by that for
the target month of boreal spring, or the spring persistence barrier of
ENSO. This can be seen in the change of the multi-model mean of the
seasonal evolution of the persistence of CP ENSO, which shows a sig-
nificant (over 95% level) reduction for the target months around the
boreal spring to summer (Fig. 1a), corresponding to a stronger spring
persistence barrier in the future climate (Fig. 1b). For individual models,
32 of the 36 models (89%) simulate a significantly increased spring
persistence barrier strength (see Methods) of CP ENSO in the future
period (Fig. 1b). The multi-model mean increase in the spring persis-
tence barrier strength of CP ENSO will be 21% in the future, which is
significant at more than 95% confidence level according to a bootstrap
test. The correspondence of the reduction of year-round persistence
with the strength of the spring persistence barrier across models can
also be seen in the cross-model scatter diagram (Supplementary
Fig. 4a, b). In contrast, for the EP ENSO, there is no robust change in
either the year-roundpersistence (Supplementary Fig. 3b), or the spring
persistence barrier strength (Fig. 1c). The conclusion remains unchan-
ged when we use other definitions of CP and EP ENSO (such as the NCP
and NEP index38), or we use the subset of 28 CMIP6 models that can
simulate ENSO nonlinearity (i.e., CP and EP ENSO37), both for the year-
roundpersistence and spring persistence barrier (Supplementary Fig. 5,
6). We also find that the timing of the persistence barrier (seeMethods)

occurs onemonth earlier with global warming (Supplementary Fig. 7a).
Since part of the ENSO predictability is contributed by the SSTA
persistence25, the reduced persistence and increased strength of spring
persistence barrier of CP ENSO in a warming climate should contribute
to reduced predictability.

Increased SPB of CP ENSO under greenhouse warming
We then assess ENSO predictability and SPB using a Linear Inverse
Model (LIM) of the tropical Pacific SST. LIM has been used extensively
in the study of tropical Pacific SST variability and has shown prediction
skill for real world ENSO largely comparable with dynamic models39.
Here, LIM is used to further investigate ENSO predictability under
global warming in CMIP6 models. Under the LIM framework (see
Methods), we find a significant decrease in the anomaly correlation
coefficient (ACC) of CP ENSO prediction in both the year-round ACC
(Supplementary Fig. 8a) and for the target month of boreal spring
(Fig. 2a). Across individual models, 26 out of 34 models (76%) project
an increased strength in the SPB for CP ENSO significant at the 95%
confidence level (Fig. 2b). The multi-model mean increase in the SPB
strength of CP ENSO will be 25% in the future, which is significant at
more than 95% confidence level according to a bootstrap test. In
contrast, no significant change in the prediction ACC is detected for EP
ENSO (Supplementary Fig. 8b and Fig. 2c). The largely consistent
reduction of year-round ACC with the strength of SPB across models
can also be seen in the cross-model scatter diagram (Supplementary
Fig. 4c, d). These results suggest that CP ENSO predictability will likely
decrease,mainly due to the difficulty of prediction to pass through the
boreal spring in a future warming climate. The conclusion remains
unchanged when we use other definition of CP and EP ENSO (NCP and
NEP index38), or we use the subset of CMIP6 models that can simulate
ENSO nonlinearity, both for year-round ACC and SPB (Supplementary
Fig. 9, 10). The timing of the SPB (see Methods) also occurs about one
month earlier as in the persistence barrier (Supplementary Fig. 7a, b),
and is therefore likely contributed by the earlier persistence barrier.
Increased SPB strength and earlier SPB timing of CP ENSO suggest that
the future CP ENSO predictability will decline to a certain level in an
earlier timing. Therefore, CP ENSO will be more unpredictable in the
future.

Understanding the enhanced CP ENSO SPB using ROM
We now identify the key factors affecting the change of SPB strength
and, in turn, predictability, of CP ENSO using a two-box recharge
oscillation model (ROM) that is fitted to each model ENSO40 (see
Methods). For the six parameters of the two-box ROM, only
three parameters (a21, a22 and a31) show significant change under
future warming climate (Supplementary Fig. 11). Physically, a21 and a31

are related to the growth (damping) rate of CP ENSO and thermocline
depth, respectively, while a22 represents the coupling effect of ther-
mocline depth on SSTA. In total, 30 of the 36 models (83%) show
decreased a21 in the future period (red bars in Fig. 3a), with the multi-
model mean decreased significant at the 95% confidence level; 27 of
the 36models (75%) simulate an increased a22 in the future period (red
bars in Fig. 3b), with themulti-model mean increased significant at the
95% confidence level. We do not discuss a31 here because it does not
change persistence barrier strength (Supplementary Fig. 12).

To investigate the impact of a21 and a22 changes on ENSO pre-
dictability in ROM, we use the prediction in the two-box ROM model,
with the two parameters a21 and a22 changing from the present-day to
future climate, and other parameters fixed (see Methods). In the per-
fectmodel framework, we use the “truth” produced by themodel itself
and perform ensemble forecast starting every calendarmonth. For the
future climate, the ACC of CP ENSO is significantly reduced compared
to the present-day climate when the forecast is made through the
boreal spring (e.g., Supplementary Fig. 15c), leading to a stronger SPB
and reducedpredictability.We further compare the SPB strength ofCP
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ENSO in the present-day and future climate. Within the 36 models, 28
models (78%) simulate an increased SPB strength of CP ENSO in the
future period (Supplementary Fig. 13a), with the multi-model mean
increased statistically significant at the 95% confidence level. In con-
trast, the change of EP ENSO predictability is insignificant (Supple-
mentary Fig. 13b). Note here we also evaluate ENSO SPB in the CMIP6
by using this ROM (Supplementary Fig. 14; see Methods) and find that
the conclusion remains the same as that in the perfect model frame-
work. The consistent predictability change between ROM and LIM
suggests the utility of ROM for understanding the decreased predict-
ability for ENSO.

Thepersistence barrier and SPB strength inROMvarywitha21 and
a22 (Fig. 3c).When a21 decreases (stronger damping of the system), the
strengths of the persistence barrier and SPB both strengthen (red

arrow in Fig. 3c). However, when a22 increases (stronger coupling
effect of thermocline depth on SSTA), the strength increases for the
persistence barrier, but decreases for the SPB (blue arrow in Fig. 3c).
For the relationship between the persistence barrier and SPB strength
in the ROM, the role of decreasing a21 and increasing a22 is opposite,
consistent with previous findings (ref. 25.). This implies that the
enhanced CP ENSO SPB strength under global warming is caused by
the decreasing a21 via increasing the CP ENSOdamping rate. Note here
the modulation of a21 under global warming can also explain why the
ACC differences peak in July instead of persisting into the subsequent
wintertime (i.e., Fig. 2a). Compared to 1900–1999, a21 decreases (more
negative) in 2000–2099. By taking a21 = � 0:02month�1 (Supple-
mentary Fig. 15a) and a21 = � 0:15month�1 (Supplementary Fig. 15b) in
the ROM (other parameters unchanged), we find the maximum
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Fig. 1 | Projected changes in persistence of El Niño-Southern Oscillation. a The
change in multi-model mean persistence map of Central-Pacific (CP) El Niño-
Southern Oscillation (ENSO) between future (2000–2099) and present-day
(1900–1999) climates. Only the difference (future minus present-day) exceeding
95% confidence level is shown in the figure (see bootstrap test in Methods).

b, c Comparison of (b) CP and (c) Eastern-Pacific (EP) ENSO persistence barrier
strength over present-day (blue bars) and future (red bars). Error bars are calcu-
lated as 1.0 standard deviation of 10,000 inter-realizations of a bootstrap method
(see bootstrap test inMethods).Models that are opposite to themulti-modelmean
result are marked in white shading.
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decrease of predictability occurs in July (Supplementary Fig. 15c).
Although the annualmean damping rate, a decrease in a21 leads to the
lowest growth rate in the boreal spring/early summer. The system
damps more quickly, and the predictability decreases most rapidly in
July (Supplementary Fig. 15c).

A possible mechanism of enhanced SPB of CP ENSO
The reduced predictability of CP ENSO under greenhouse warming
appears to be caused by a stronger ENSO damping rate, as encapsu-
lated by a21 in the ROM. ENSO damping rates are affected by multiple
air-sea feedbacks, which include three positive feedbacks of zonal
advective feedback (ZA), thermocline feedback (TH), and Ekman
feedback (EK)), and two negative feedbacks of thermodynamical

damping (TD) and dynamical damping (DD)41, as well as extratropical
impact12. Our calculation of each feedback shows that global warming
tends to enhance the three positive feedbacks42–45 (see also Supple-
mentary Fig. 16 and Supplementary Table 1) aswell as the North Pacific
impact (Supplementary Note 2, Supplementary Fig. 17) for CP ENSO.
However, these effects are overwhelmed by the even stronger increase
of negative feedbacks (DD and TD terms in Supplementary Fig. 16) for
CP ENSO, which leads to a net increase of the CP damping rate (a21 in
Fig. 3a; Supplementary Fig. 16; note here the choice of the region for
CP ENSO index does not change the calculated CP ENSO growth rate
substantially). We further analyze the spatial pattern of TD and DD
terms.TheTDcanbe further derivedby regressing thenet surface heat
flux anomalies onto the C index. The increased negative feedback is

a C index: ACC difference
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Fig. 2 | Projected change in spring predictability barrier of El Niño-Southern
Oscillation. a The change in multi-model-mean anomaly correlation coefficient
(ACC) map obtained from LIM for central Pacific (CP) El Niño-Southern Oscillation
(ENSO) between future (2000–2099) and present-day (1900–1999) climates. Only
the difference (futureminus present-day) exceeding 95% confidence level is shown
in the figure (see bootstrap test in Methods). b, c Comparison of (b) CP and (c)

eastern-Pacific (EP) ENSO spring predictability barrier (SPB) strength predicted by
linear inversemodel (LIM) over present-day (blue bars) and future (red bars). Error
bars are calculated as 1.0 standard derivation of 10,000 inter-realizations of a
bootstrapmethod (see bootstrap test inMethods). Models that are opposite to the
multi-model mean result are marked in white shading.
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dominated by the increase of thermodynamic damping (TD) (Fig. 4),
while the dynamic damping is not changed significantly (Supplemen-
tary Fig. 18). Therefore, TD termplays an important role in reducingCP
ENSO growth rate and predictability. Compared to the present-day
(Fig. 4a), the net heat flux response to C index significantly increases
under greenhouse warming (Fig. 4b), especially in the equatorial cen-
tral Pacific (170°W–140°W, 5°S-5°N; black box in Fig. 4c). As a quanti-
tative measure, in the maximum TD region (black box in Fig. 4c), 93%
(28 out of 30) of models show a strengthening TD, significant at the
95% confidence level (Fig. 4d). In the 28 models of increasing TD, 86%
(24) models show increased SPB strength (pink area in Fig. 4e). Under
greenhouse warming, the warming in SSTA11,45 enhances the TD via

increased latent heat loss and deep clouds, acting to reduce the per-
sistence and predictability, and in turn, increasing persistence barrier
and SPB strength, of CP ENSO. The thermodynamic damping is
strengthened somuch that it overwhelms the enhanced predictability
from the North Pacific (Supplementary Note 2).

Discussion
In response to futuregreenhousewarming,wefind that, across the latest
CMIP6 models, predictability will be reduced for CP ENSO, but remain
little changed for EPENSO.The strengthof the springpersistencebarrier
and SPBwill be increased by 21% and 25% in the future, respectively. The
predictability of CP ENSO is suppressed by the enhanced
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Fig. 3 | Projected changes in parameters of two-box recharge oscillationmodel
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Model Intercomparison Project Phase 6 (CMIP6) models over present-day (blue
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(a22). The difference is calculated relative to the casewhen a21 is −0.05month−1 and
a22 is 0.0098 °Cm−1 month−1. The red dots (light to dark) and arrow indicate a21

ranging from −0.02 to −0.15 month−1. The blue dots (light to dark) and arrow
indicate a22 ranging from 0.0084 to 0.011 °Cm−1 month−1.
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thermodynamic damping and the resulting decreasing growth rate.
Furthermore, since CP ENSO frequency may be increased under green-
house warming11,45,46, the CP ENSO may become the dominant mode of
ENSO in the future. Our study, therefore, suggests that the prediction of
CP ENSO will be more challenging in the future under global warming,
which may lead to the reduced predictability of climate worldwide.

Methods
Reanalysis and model outputs
Themonthly data (SSTanddepthof 20 °C isotherm) from1958 to2022
is obtained from the European Centre for Medium‐Range Forecasts
Ocean Reanalysis System 5 (ORAS5)47. All monthly mean data are used
after the climatological seasonal cycle, and quadratic trends are
removed.

We use outputs from the CMIP6 multi-model ensemble,
including monthly SST, subsurface temperature, zonal current,
meridional current, vertical current, and downward net heat flux
data interpolated to the same spatial 1° × 1° grid (Supplementary
Table 2). These models are forced under historical anthropogenic
and natural forcing up to 2014 and thereafter future greenhouse-gas
forcing under the SSP585 emission scenario till 210048. We compare
changes in ENSO predictability between the present-day
(1900–1999) and future (2000–2099) climate, covering the 200-
year period. Monthly anomalies of all variables from models are
obtained with reference to the monthly climatology of 1900–1999
and quadratically detrended two periods together11,14.

EP and CP indices
The centers of maximum SSTA for CP and EP ENSO are different
among models11,12,37. Here, we use the principal component (PC) time
series of first two EOF modes of monthly SSTA in equatorial Pacific
(5°S-5°N, 140°E-80°W) to define two indices that can represent CP and

EP ENSO as in ref. 11. to account for model systematic errors (Sup-
plementary Fig. 19a–d). The EOFs used to determine EP and CP ENSO
were calculated using the full period. The PC time series is scaled to
have a standard deviation of one. The multi-model mean patterns of
the first two EOF modes reasonably resemble the observed patterns
(Supplementary Fig. 19c, d vs. Supplementary Fig. 19a, b). The linear
combinations of normalized PC1 and PC2 represent CP and EP ENSO,
referred to as C-index ( PC1 + PC2ð Þ=

ffiffiffi
2

p
) and E-index ( PC1� PC2ð Þ=

ffiffiffi
2

p
).

The nonlinearity is reflected by fitting PC1 and PC2 with the
quadratic function PC2 tð Þ=α PC1 tð Þ½ �2 +βPC1 tð Þ+ γ, with the parameter
“α” (Alpha) signifying ENSO nonlinearity37 (Supplementary Fig. 19e).
Models with a greater Alpha systematically produce a greater ampli-
tude of E-index positive skewness and C-index negative skewness
(Supplementary Fig. 19f). Therefore, Alpha is a simple yet physically
soundmetric for quantifying ENSO nonlinearity and we use Alpha as a
criterion for selecting models. We use 28 models that produce Alpha
value at least one third of the observed Alpha value (−0.32) to test the
sensitivity to model selection.

Definition of spring persistence barrier and SPB strength
The autocorrelation function (i.e. persistence) is a function of initial
months m and lag months t, which can be written as r(m,t)21. ENSO
spring persistence barrier strength can be defined from the auto-
correlation as follows49,50. First, for a calendar month m, we identify
tBðmÞ as the specific lag of maximum autocorrelation decline, which is
calculated as the lag gradient in the time step of 1 month. The max-
imum gradient for initial month m can be calculated as

SB1 mð Þ= r m, tB mð Þ � 1
� �� r m, tB mð Þ+ 1� �

2

� �
=maxt

r m, t � 1ð Þ � rðm, t + 1Þ
2

� �
ð1Þ

Fig. 4 | Mechanism for the projected decrease in central Pacific El Niño-
Southern Oscillation predictability. a–c Multi-model mean pattern of thermo-
dynamical damping (unit: Wm�2 per s:d:) in tropical Pacific under (a) present-day
(1900–1999), b future climate (2000–2099), and c the difference between present-
day and future climate. Only the difference exceeding 95% confidence level is
shown. The thermodynamical damping is calculated by regressing the net surface
heat flux anomalies onto the C index. d Comparison of central Pacific (CP) El Niño-

SouthernOscillation (ENSO) thermodynamic damping over present-day (blue bars)
and future (red bars). Error bars are calculated as 1.0 standard derivation of 10,000
inter-realizations of a bootstrap method (see bootstrap test in Methods). Models
that are opposite to the multi-model mean result are marked in white shading.
e Scatter plots between thermodynamic damping (x axis) and spring predictability
barrier (SPB) difference (y axis; future minus present-day) for models of strength-
ening thermodynamical damping. The models name are listed below.
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Second, the strength of the spring persistencebarrier is estimated
as

SB =
X12
m= 1

SB1ðmÞ ð2Þ

The corresponding persistence month (tB0ðmÞ) is estimated as:

tB0 mð Þ=m+ tBðmÞ ð3Þ

The timing (tB0) of persistence barrier can be calculated by
average the tB0ðmÞ as:

tB0 =
1
12

X12
m= 1

tB0 mð Þ ð4Þ

The definition of SPB strength/timing is the same as spring per-
sistence barrier strength/timing, but is calculated using the ACC
instead of persistence.

The two-box recharge oscillator model
The recharge/discharge paradigm also applies to CP ENSO51 and a new
two-box recharge model for CP/EP ENSO with zonal wind stress and
equatorial thermocline depth established40. Following the recharge-
discharge framework, we adopt a two-box rechange model (ROM):

dTE

dt
=R1TE +a12h+ σEwðtÞ ð5Þ

dTC

dt
=R2TC +a22h + σcw tð Þ ð6Þ

dh
dt

=a31h+a32 TE +TC

	 

+ σhw tð Þ ð7Þ

R1 =a11 +A1 sin ωat � φ1

	 
 ð8Þ

R2 =a21 +A2 sin ωat � φ2

	 
 ð9Þ

Note themodel used here is similar to previous studies40, but with
some modifications. The zonal wind stress terms are omitted because
their change has not effect on the strength of spring persistence bar-
rier. R1 and R2 are seasonally varying as the seasonal cycle of ENSO
growth rate is the cause of SPB52. The variable TE and TC represent the
E index and C index, respectively. The h denotes the equatorial aver-
aged thermocline depth anomalies (depth of 20 °C isotherm) in the
Pacific (120°E-80°W, 5°S–5°N). a11, a21 and a31 represent the growth
(damping) rates of TE , TC and h, respectively. a12 and a22 denote the
coupling effect of h on TE and TC , respectively. a32 indicate the cou-
pling effect of TE and TC on h.

All the numerical solutions of the ROMpresented in this paper are
calculated from the last 2000 years of a 2050-year run. The numerical
models are integrated in the time step of 0.3 days. Model parameters
can be estimated for observations and each model of the CMIP6
individually, using multilinear regression method. The resulting ROM
model can successfully simulate the observed phase locking and SPB
phenomenon for CP and EP ENSO (Supplementary Fig. 20).

We also perform ensemble forecasts using the ROM to compare
the prediction skills of different initial months both in the perfect
model and in the CMIP6. The parameters in the two-box ROM are
obtainedby the regression,which is consistentwithprevious study40,53.
We regress all the parameters in simple rechargemodel of each CMIP6
models in present-day and future climate, respectively. To explore the
roles of a21 and a22, other parameters (e.g., a12) remain the same both

in the historical and future scenarios parameters (the parameters are
calculated by the averages between the two scenarios) while a21 and
a22 are different in the two scenarios. In the perfectmodel framework,
we use the control run as the “truth”. Then, we do ensemble forecasts
every month for 400 years with 12 months forecast length to get suf-
ficient forecast data by using these parameters. For each of the fore-
cast ensemblemembers (20members in total), a small randomnormal
perturbation with an amplitude of 0.1 times the standard deviation of
TC /TE is added to the initial condition of variable TC /TE

54. The CMIP6
framework is the same as the perfectmodel framework, except that we
use E and C indices under present-day and future climate in each
CMIP6 model as “truth”.

In this study, the forecast skill is quantifiedusing the forecast ACC.
The forecast ACC is defined as the temporal correlation coefficient
between the ensemble mean forecast and the corresponding “truth”:

ACC =
<Fi,Oi>ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

<Fi,Fi><Oi,Oi>
p ð10Þ

where Fi is the ensemblemean forecast anomaly for forecastmonth or
year i, and Oi is the verifying observed anomaly. < > denotes the var-
iance over all the months or years in verifying time series.

Linear inverse model
In this study, we employ LIM to identify the leading feedbacks between
state variables in both historical and future scenario
CMIP6 simulations. Following the framework introduced in ref. 55, the
system can be expressed as:

dx
dt

=Lx+ ξ ð11Þ

where x is the state vector of the system, L represents the linear
deterministic dynamic, and ξ denotes the white noise forcing. L is
determined by the lagged autocovariance matrix and the con-
temporaneous autocovariance matrix of x:

L= τ0
�1ln C τ0

	 

C 0ð Þ�1

n o
ð12Þ

where C τ0
	 


= xðt + τ0ÞxT ðtÞ� �
is the lagged covariance matrix of x at

lag τ0, andC 0ð Þ= xðtÞxT ðtÞ� �
is the covariancematrix of x. In this work,

we use τ0 = 1 month. The forecast at a time lag τ from the initial
calendar month m can be obtained as:

xf m+ τð Þ= exp Lτð Þx mð Þ ð13Þ

The seasonal forecast skill can be quantified by calculating the
ACC between xf m+ τð Þ and the original dataset (“truth”), as per the
approach described by ref. 28.

For the LIM presented in this work, we constructed the state
vector x using the leading PCs of SSTA and sea surface height
anomalies (SSHA). When exploring ENSO predictability within the
tropical Pacific, we employ variables over to the tropical Pacific area to
constitute the state vector:

xTP =
SSTTP20

SSHTP20

� �
ð14Þ

where SSTTP20 (SSHTP20) contains the 12(4) leading PCs of SSTA
(SSHA) in the tropical Pacific (20°S − 20°N, 140°E− 80°W). The inclu-
sion of SSHA is motivated by research indicating that the information
on tropical thermocline depth is important for improving the skill of
ENSO forecasts56 and is crucial for capturing the diverse nature of
ENSO events57,58. The results built upon xTP are shown in Fig. 2. To
assess the capability of LIM on simulating and predicting two types of
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ENSO, we constructed a stochastic time series of SST by integrating
Eq. (11) with randomnoise/forcing following refs. 59,60. The regression
map of the observed (reconstructed) SST onto the observed (recon-
structed) E and C index is shown in Supplementary Fig. 21. Notably, the
reconstructed SST exhibits similar EP and CP ENSO patterns to those
observed in the original data. Additionally, the lag-covariance of SST in
the tropical Pacific is also well captured by the reconstructed SST field
(Supplementary Fig. 22). These results collectively indicate that our
LIM approach reasonably captures the spatial and temporal character-
istics of EP and CP ENSO. Here, we use 34 CMIP6 data to estimate ENSO
predictability by LIM because the SSHA data is available in those
models. We have implemented k-fold cross-validation to evaluate the
forecast skill in the paper. A similar cross-validation method has been
used in several previous studies, such as refs. 33,56,61. We evenly
divided the 99 years of the data into 9 segments (1900–1999 or
2000–2099). When doing forecasts for each segment, we trained LIM
with the rest of the years of data. After we got the forecast for the
whole 99-year period, we evaluated the forecast skill by calculating the
ACC between the forecast and the original data.

To further investigate the contribution of the North Pacific (e.g.,
NPMM) on ENSO prediction, we construct a coupled LIM framework
using the state vector encompassing variables from both the tropical
and northern Pacific regions:

xcp =
xTP

xNP

� �
=

SSTTP10

SSHTP10

SSTNP12

SSHNP12

2
6664

3
7775 ð15Þ

To separate the dynamics from tropical and northern Pacific, we
narrow the tropical Pacific domain to (10°S − 10°N, 140°E − 80°W) and
use the 12 (4) leading PCs of SSTA (SSHA) as SSTTP10 (SSHTP10). SSTNP12

(SSHNP12) contains the 6(4) leading PCs of SSTA (SSHA) in the northern
Pacific (12°N − 60°N, 140°E − 100°W). The dynamics of this coupled
system of tropical Pacific and northern Pacific can be decomposed by
rewriting Eq. (12) as:

dxcp

dt
=

d
dt

xTP

xNP

� �
=

LTT LNT

LTN LNN

� �
xTP

xNP

� �
+

ξTP

ξNP

� �
ð16Þ

In this coupled LIM, LTT and LNN represent the internal dynamics
within the tropical and northern Pacific regions, respectively, whereas
LNT and LTN represent the interaction between tropical and northern
Pacific. The ENSO forecast skill achieved through this coupled LIM
incorporates contributions from both tropical Pacific and northern
Pacific. When LNT and LTN are set to be 0, we establish a decoupled
LIM, which allows for the assessment of ENSO predictability solely
from the tropical Pacific region. The differences in the forecast skill
between the coupled and decoupled LIM can be used as an estimation
of the northern Pacific contribution (Supplementary Fig. 17). The
validity of this approach has been confirmed through previous studies
that have employed it to diagnose interactions between variabilities in
the tropical Pacific and other regions (e.g., refs. 28,62).

Negative feedback: thermodynamical damping and dynamical
damping
The term a21 in two-box ROM is related to BJ index41 (Supplementary
Table 1). The BJ index contains three positive feedbacks and two
negative feedbacks, where the negative feedbacks are thermo-
dynamical damping (TD) and dynamical damping (DD). The TD coef-
ficient, denoted α, is calculated via linear regression of the net
downward surface heat flux anomalies onto the C index, namely

Qnet = � α � C index ð17Þ

The dynamical damping represents advection due to mean zonal,
meridional, and vertical currents, namely

DD = � �uh i
Lx

+
�2y�v
� �

L2y
+

�wh i
Hm

 !
ð18Þ

�u, �v and �w represent climatological means of zonal, meridional,
and vertical currents. Lx and Ly are the longitudinal and latitudinal
extents of the equatorial Pacific (5°S-5°N, 120°E-90°W), respectively,
and the factor −2y/Ly assumes that the tropical SST anomalies are
Gaussian with an e-folding decay scale of Ly. Hm is the effective depth
for the vertical current that sets to 50m.

Statistical significance test
Weuse abootstrapmethod to examinewhether thedifference inmean
between sampleA and sample B is statistically significant63. Sample A is
re-sampled randomly to construct 10,000 realizations of mean stan-
dard deviation. In this random re-sampling process, any sample in
sample A is allowed to be selected multiple times. The same is carried
out for the sample B. The 10,000 realizations of the sum of the two
standard deviations can determine 95% confidence intervals for the
differenceofmeanbetween sample A and sampleB. If the difference in
the multi-model mean value between the two samples is greater than
the sum of the two separate 10,000-realization standard deviation
values, the difference is considered statistically significant above the
95% confidence level.

Data availability
All data related to this paper canbedownloaded as follows: TheORAS5
data are available at https://cds.climate.copernicus.eu/cdsapp#
!/dataset/reanalysis-oras5?tab=form. The CMIP6 data can be down-
loaded online https://esgf-node.llnl.gov/projects/cmip6/. Source data
to reproduce the figures of this paper are available on https://doi.org/
10.5281/zenodo.11111800.

Code availability
Code and source data for the main results is available on https://doi.
org/10.5281/zenodo.11111800.

References

1. Neelin, J. D. et al. ENSO theory. J. Geophys. Res. Oceans 103,
14261–14290 (1998).

2. McPhaden,M. J., Zebiak, S. E. &Glantz,M.H. ENSOas an integrating
concept in earth science. Science 314, 1740–1745 (2006).

3. Cai, W. et al. ENSO and greenhouse warming. Nat. Clim. Change 5,
849–859 (2015).

4. Ropelewski, C. F. & Halpert, M. S. Global and regional scale pre-
cipitationpatterns associatedwith the El Niño/SouthernOscillation.
Mon. Weather Rev. 115, 1606–1626 (1987).

5. Glynn, P. W. & De Weerdt, W. H. Elimination of two reef-building
hydrocorals following the 1982-83 El Niño warming event. Science
253, 69–71 (1991).

6. Bove,M. C., Elsner, J. B., Landsea, C.W., Niu, X. &O’Brien, J. J. Effect
of El Niño on US landfalling hurricanes, revisited. Bull. Am. Meteor.
Soc. 79, 2477–2482 (1998).

7. Cai, W. et al. Changing El Niño–Southern Oscillation in a warming
climate. Nat. Rev. Earth. Environ. 2, 628–644 (2021).

8. Kao, H. Y. & Yu, J. Y. Contrasting eastern-Pacific and central-Pacific
types of ENSO. J. Clim. 22, 615–632 (2009).

9. Takahashi, K., Montecinos, A., Goubanova, K. & Dewitte, B. ENSO
regimes: reinterpreting the canonical andModoki El Niño.Geophys.
Res. Lett. 38, L10704 (2011).

10. Capotondi, A. et al. Understanding ENSO diversity. Bull. Am.
Meteor. Soc. 96, 921–938 (2015).

Article https://doi.org/10.1038/s41467-024-48804-1

Nature Communications |         (2024) 15:4370 8

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-oras5?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-oras5?tab=form
https://esgf-node.llnl.gov/projects/cmip6/
https://doi.org/10.5281/zenodo.11111800
https://doi.org/10.5281/zenodo.11111800
https://doi.org/10.5281/zenodo.11111800
https://doi.org/10.5281/zenodo.11111800


11. Cai, W. et al. Increased variability of eastern Pacific El Niño under
greenhouse warming. Nature 564, 201–206 (2018).

12. Jia, F., Cai, W., Gan, B., Wu, L. & Di Lorenzo, E. Enhanced North
Pacific impact on El Niño/Southern Oscillation under greenhouse
warming. Nat. Clim. Change 11, 840–847 (2021).

13. Cai, W. et al. Increased ENSO sea surface temperature variability
under four IPCC emission scenarios. Nat. Clim. Change 12,
228–231 (2022).

14. Geng, T. et al. Increased occurrences of consecutive La Niña events
under global warming. Nature 619, 774–781 (2023).

15. Yeh, S. W. et al. ENSO atmospheric teleconnections and their
response to greenhouse gas forcing. Rev. Geophys. 56, 185–206
(2018).

16. Taschetto, A. S. et al. Chapter 14: ENSO atmospheric teleconnec-
tions. In: McPhaden M. J., Santoso, A. and Cai, W. (ed) El Niño
Southern Oscillation in a changing climate. Washington, D.C., pp
311–335 (2020).

17. Wang, G. et al. Future SouthernOceanwarming linked to projected
ENSO variability. Nat. Clim. Change 12, 649–654 (2022).

18. Cai, W. et al. Antarctic shelf ocean warming and sea ice melt
affected by projected El Niño changes. Nat. Clim. Change 13,
235–239 (2023).

19. Kang, S. M. et al. Walker circulation response to extratropical
radiative forcing. Sci. Adv. 6, eabd3021 (2020).

20. Zhao, M., Hendon, H. H., Alves, O., Liu, G. & Wang, G. Weakened
Eastern Pacific El Niño predictability in the early twenty-first cen-
tury. J. Clim. 29, 6805–6822 (2016).

21. Jin, Y., Lu, Z. & Liu, Z. Controls of spring persistence barrier strength
in different ENSO regimes and implications for 21st century chan-
ges. Geophys. Res. Lett. 47, e2020GL088010 (2020).

22. An, S., Kug, J., Ham, Y. & Kang, I. Successivemodulation of ENSO to
the future greenhouse warming. J. Clim. 21, 3–21 (2008).

23. Cai,W. et al. Butterfly effect and a self-modulating El Niño response
to global warming. Nature 585, 68–73 (2020).

24. Zheng, Y., Rugenstein, M., Pieper, P., Beobide-Arsuaga, G. & Baehr,
J. El Niño–SouthernOscillation (ENSO) predictability in equilibrated
warmer climates. Earth Syst. Dyn. 13, 1611–1623 (2022).

25. Jin, Y., Liu, Z. & Duan, W. The different relationships between the
ENSO spring persistence barrier and predictability barrier. J. Clim.
35, 6207–6218 (2022).

26. Jin, Y. The signal-to-noise paradox in ENSO prediction: Role
of ENSO growth rate and period. Geophys. Res. Lett. 49,
e2022GL097965 (2022).

27. Fan, H., Yang, S., Wang, C., Wu, Y. & Zhang, G. Strengthening
amplitude and impact of the pacific meridional mode on ENSO in
the warming climate depicted by CMIP6 models. J. Clim. 35,
5195–5213 (2022).

28. Zhao, Y., Jin, Y., Li, J. &Capotondi, A. The role of extratropical Pacific
in crossing ENSO spring predictability barrier. Geophys. Res. Lett.
49, e2022GL099488 (2022).

29. Ham, Y. G., Kug, J. S. & Park, J. Y. Two distinct roles of atlantic SSTs
in ENSO variability: North Tropical Atlantic SST and Atlantic Niño.
Geophys. Res. Lett. 40, 4012–4017 (2013).

30. Cai, W. et al. Pantropical climate interactions. Science 363,
eaav4236 (2019).

31. Slingo, J. M., Rowell, D. P., Sperber, K. R. & Nortley, F. On the pre-
dictability of the interannual behaviour of the Madden‐Julian
Oscillation and its relationship with El Niño. Q. J. R. Meteorol. Soc.
125, 583–609 (1999).

32. McPhaden, M. J., Zhang, X., Hendon, H. H. & Wheeler, M. C. Large
scale dynamics andMJO forcing of ENSO variability.Geophys. Res.
Lett. 33, L16702 (2006).

33. Jin, Y. et al. The indian ocean weakens the ENSO spring predict-
ability barrier: role of the indian ocean basin and dipole modes. J.
Clim. 36, 8331–8345 (2023).

34. Zhao, Y., Jin, Y., Capotondi, A., Li, J. & Sun, D. The role of tropical
Atlantic in ENSO predictability barrier. Geophys. Res. Lett. 50,
e2022GL101853 (2023).

35. Torrence, C. & Webster, P. J. The annual cycle of persistence in the
El Niño/SouthernOscillation.Q. J. R.Meteorol. Soc. 124, 1985–2004
(1998).

36. L’Heureux et al. Chapter 10: ENSO prediction. In: McPhaden M.J.,
Santoso, A. and Cai, W. (ed) El Niño Southern Oscillation in a
changing climate. Washington, D.C., pp 227–246 (2020).

37. Geng, T. et al. Emergence of changing Central-Pacific and Eastern-
Pacific El Niño-Southern Oscillation in a warming climate. Nat.
Commun. 13, 6616 (2022).

38. Ren, H. L. & Jin, F. F. Niño indices for two types of ENSO. Geophys.
Res. Lett. 38, L04704 (2011).

39. Newman, M. & Sardeshmukh, P. D. Are we near the predictability
limit of tropical Indo-Pacific sea surface temperatures? Geophys.
Res. Lett. 44, 8520–8529 (2017).

40. Geng, T., Cai, W. & Wu, L. Two types of ENSO varying in tandem
facilitated by nonlinear atmospheric convection. Geophys. Res.
Lett. 47, e2020GL088784 (2020).

41. Jin, F. F., Kim, S. T. & Bejarano, L. A coupled‐stability index for ENSO.
Geophys. Res. Lett. 33, L23708 (2006).

42. Philip, S. Y. & van Oldenborgh, G. J. Shifts in ENSO coupling pro-
cesses under global warming.Geophys. Res. Lett. 33, L11704 (2006).

43. Kim, S. T. & Jin, F. F. An ENSO stability analysis. Part II: results from
the twentieth and twenty‐first century simulations of the CMIP3
models. Clim. Dyn. 36, 1609–1627 (2011).

44. Cai W. et al. Chapter 13: ENSO response to greenhouse forcing. In:
McPhaden M. J., Santoso, A. and Cai, W. (ed) El Niño Southern
Oscillation in a changing climate. Washington, D.C., pp 289–307
(2020).

45. Shin, N. Y. et al. More frequent central Pacific El Niño and stronger
eastern pacific El Niño in a warmer climate. npj Clim. Atmos. Sci. 5,
101 (2022).

46. Yeh, S. W. et al. El Niño in a changing climate. Nature 461, 511–514
(2009).

47. Zuo, H., Balmaseda, M. A. &Mogensen, K. The new eddy‐permitting
ORAP5 ocean reanalysis: description, evaluation and uncertainties
in climate signals. Clim. Dyn. 49, 791–811 (2017).

48. Eyring, V. et al. Overview of the Coupled Model Intercomparison
Project Phase 6 (CMIP6) experimental design and organization.
Geosci. Model Dev. 9, 1937–1958 (2016).

49. Liu, Z., Jin, Y. & Rong, X. A theory for the seasonal predictability
barrier: threshold, timing, and intensity. J. Clim.32, 423–443 (2019).

50. Jin, Y. & Liu, Z. A theory of the spring persistence barrier on ENSO.
Part I: the role of ENSO period. J. Clim. 34, 2145–2155 (2021).

51. Ren, H. L. & Jin, F. F. Rechargeoscillatormechanisms in two types of
ENSO. J. Clim. 26, 6506–6523 (2013).

52. Levine, A. F. Z. & McPhaden, M. J. The annual cycle in ENSO growth
rate as a cause of the spring predictability barrier. Geophys. Res.
Lett. 42, 5034–5041 (2015).

53. Dommenget, D., Bayr, T. & Frauen, C. Analysis of the non-linearity in
the pattern and time evolution of El Niño southern oscillation. Clim.
Dyn. 40, 2825–2847 (2013).

54. Wang, P., Jin, Y. & Liu, Z. A diurnal predictability barrier for weather
forecasts. Mon. Weather Rev. 149, 1715–1723 (2021).

55. Penland, C. & Sardeshmukh, P. D. The optimal-growth of tropical
sea-surface temperature anomalies. J. Clim. 8, 1999–2024 (1995).

56. Newman, M., Alexander, M. A. & Scott, J. D. An empirical model of
tropical ocean dynamics. Clim. Dyn. 37, 1823–1841 (2011).

57. Capotondi, A. & Sardeshmukh, P. D. Optimal precursors of different
types of ENSO events. Geophys. Res. Lett. 42, 9952–9960 (2015).

58. Capotondi, A. et al. Chapter 4: ENSO diversity. In: McPhaden M. J.,
Santoso, A. and Cai, W. (ed) El Niño Southern Oscillation in a
changing climate. Washington, D.C., pp 65–86 (2020).

Article https://doi.org/10.1038/s41467-024-48804-1

Nature Communications |         (2024) 15:4370 9



59. Penland, C. & Matrosova, L. A balance condition for stochastic
numerical models with application to the El Niño-southern oscilla-
tion. J. Clim. 7, 1352–1372 (1994).

60. Newman, M., Sardeshmukh, P. D. & Penland, C. How important is
air-sea coupling in ENSO and MJO evolution? J. Clim. 22,
2958–2977 (2009).

61. Alexander, M. A., Matrosova, L., Penland, C., Scott, J. D. & Chang, P.
Forecasting pacific SSTs: linear inverse model predictions of the
PDO. J. Clim. 21, 385–402 (2008).

62. Zhao, Y., Newman, M., Capotondi, A., Di Lorenzo, E. & Sun, D.
Removing the effects of tropical dynamics from North Pacific cli-
mate variability. J. Clim. 34, 9249–9265 (2021).

63. Austin, P. C. & Tu, J. V. Bootstrapmethods for developing predictive
models. Am. Stat. 58, 131–137 (2004).

Acknowledgements
This study is supported by National Natural Science Foundation of China
(41925025 to X.L., 42206013 to Y.J., 42394130 to X.C., 42206210 to
D.S.), the Fundamental Research Funds for the Central Universities
(842441012 and 842262006 to Y.J., 202461003 to H.C.) and the Natural
Science Foundation of Shandong Province (ZR2023ZD38 to X.C.). D.S. is
also supported by the Taishan Scholars Program (No. tsqn202306298).
This is Pacific Marine Environment Laboratory, contribution number
5576 (to M.J.M.).

Author contributions
Y.J., H.C., and Z.L. designed the research and wrote the first draft of the
paper. Y.J., H.C., and D.S. performed analysis and generated all figures.
H.C., Y.J., Z.L., D.S., X.C., M.J.M., A.C., and X.L. contributed to inter-
preting the results and improving the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-48804-1.

Correspondence and requests for materials should be addressed to
Yishuai Jin, Zhengyu Liu or Daoxun Sun.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-48804-1

Nature Communications |         (2024) 15:4370 10

https://doi.org/10.1038/s41467-024-48804-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Central-Pacific El Niño-Southern Oscillation less predictable under greenhouse warming
	Results
	Enhanced persistence barrier of CP ENSO under greenhouse warming
	Increased SPB of CP ENSO under greenhouse warming
	Understanding the enhanced CP ENSO SPB using�ROM
	A possible mechanism of enhanced SPB of CP�ENSO

	Discussion
	Methods
	Reanalysis and model outputs
	EP and CP indices
	Definition of spring persistence barrier and SPB strength
	The two-box recharge oscillator�model
	Linear inverse�model
	Negative feedback: thermodynamical damping and dynamical damping
	Statistical significance�test

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




